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Summary

A research program is underway to develop strain rate dependent deformation and

failure models for the analysis of polymer matrix composites subject to high strain rate

impact loads. Under these types of loading conditions, the material response can be

highly strain rate dependent and nonlinear. State variable constitutive equations based on

a viscoplasticity approach have been developed to model the deformation of the polymer

matrix. The constitutive equations are then combined with a mechanics of materials

based micromechanics model which utilizes fiber substructuring to predict the effective

mechanical and thermal response of the composite. To verify the analytical model,

tensile stress-strain curves are predicted for a representative composite over strain rates

ranging from around Ix l 0-5/sec to approximately 400/sec. The analytical predictions

compare favorably to experimentally obtained values both qualitatively and

quantitatively. Effective elastic and thermal constants are predicted for another

composite, and compared to finite element results.

Introduction

NASA Glenn Research Center has an ongoing research program to investigate the

feasibility of developing jet engine fan containment systems composed of polymer matrix

composite materials. To design such a system, the ability to correctly predict the

nonlinear, strain rate dependent deformation and failure of the composite under high

strain rate loading conditions is required. The deformation of polymer composites is

ordinarily assumed to be independent of strain rate and linearly elastic [1]. However,

researchers such as Daniel, et. al [2] and Staab and Gilat [3] have shown experimentally

that the elastic properties of polymer matrix composites do indeed vary with strain rate.

Furthermore, for applications such as a fan containment system, composites with

toughened polymer matrices are likely to be used, which could contribute to a nonlinear

deformation behavior for the composite. Researchers such as Thiruppukuzhi and Sun [4]

have analyzed the nonlinear deformation of polymer matrix composites on the

macroscopic level using plasticity and viscoplasticity theory. Previous efforts by the

author of this report [5] have utilized simplified micromechanics techniques to analyze

the nonlinear, rate dependent deformation of polymer matrix composites at relatively low
strain rates.

The objective of the current paper is to simulate the strain rate dependent tensile

deformation of a representative polymer matrix composite with varying fiber orientations

at strain rates ranging from around lxl0-5/sec to approximately 400/sec. An analytical
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modelwill bepresentedin whichstatevariableconstitutiveequationsbasedon
viscoplasticitytheoryareutilized to predictthestrainratedependentresponseof the
polymermatrix, includingapreliminarymethodof accountingfor theeffectsof
hydrostaticstresses.Themicromechanicstechniquesusedto predicttheeffective
mechanicalandthermalresponseof thecompositewill bedescribed.In the
micromechanicsmethodpresentedhere,theunit cell is dividedinto anumberof
horizontalslices,anduniformstressanduniform strainassumptionsarethenappliedto
eachsliceto obtaintheeffectivestresses,elasticandthermalconstants,andeffective
inelasticstrainsfor eachslice. Laminatetheoryis thenappliedto obtaintheeffective
propertiesandresponsefor eachlamina,andthenappliedagainto obtaintheeffective
responsefor thecompositelaminate.Finally, verificationstudieswill bediscussedin
whichtensilestress-straincurvesof arepresentativepolymermatrix compositeare
generatedanalyticallyusingthemathematicalmodel,andtheresultswill becomparedto
experimentallyobtainedvalues.Furthermore,effectiveelasticandthermalconstantswill
becomputedfor asecondrepresentativecompositeandtheresultswill becomparedto
valuesobtainedusingfinite elementanalyses.

Polymer Constitutive Equations

Polymers are known to have a strain rate dependent deformation response that is

nonlinear above about one or two percent strain. For this study, the Ramaswamy-

Stouffer viscoplastic state variable model [6], which was originally developed to analyze

the viscoplastic deformation of metals above one-half of the melting temperature, has

been modified to simulate the rate dependent inelastic deformation of polymers. There is

some physical motivation in utilizing constitutive equations that were developed to model

viscoplastic metals to analyze the deformation response of polymer matrix materials. For

example, the "yield stress" in polymers and the "saturation stress" in metals have both

been defined as the stress level in a uniaxial tension test where the applied strain rate

equals the inelastic strain rate [6,7]. In state variable constitutive equations, a single

unified strain variable is defined to represent all inelastic strains. Furthermore, there is no

defined yield stress. Inelastic strains are assumed to be present at all values of stress,

only very small in the "'elastic" range of deformation. State variables, which evolve with

stress and inelastic strain, are defined to represent the average effects of the deformation
mechanisms.

Several limitations and assumptions have been specified in the development of the

constitutive equations. Temperature effects are neglected. The nonlinear strain recovery

observed in polymers on unloading is not simulated, and phenomena such as creep,

relaxation and high cycle fatigue are not accounted for in the equations.

In the modified Ramaswamy-Stouffer model, the components of the inelastic strain
-I

rate tensor, e_j, are defined as a function of the deviatoric stress components, sij, and the

components of the tensorial internal stress state variable tensor f_ij in the form

) (1)
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whereDo, Zo, and n are material constants. Do is a material constant which represents the

maximum inelastic strain rate, Zo is a material constant which represented the initial,

isotropic "hardness" of the material before any load is applied and n is a material constant

which controls the rate dependence of the deformation response. The term K2 is defined
as follows

x, =5(,,,-a,,Xsi,-a,,)

and represents the second invariant of the overstress tensor. The elastic components of

strain are added to the inelastic strain to obtain the total strain. The following relation
defines the internal stress state variable rate

2 .1

_2ij = -_ q_ ,, e i, - q_2 _ie_ (3)

where q is a material constant that represents the "hardening" rate, _'_m is a material

constant that represents the maximum value of the internal stress, and _.eI is the effective

inelastic strain. The internal stress is assumed to be equal to zero when the material is in

its virgin state.

The material constants that need to be determined include Do, n, Z0, faro, and q. The

procedure for determining the values of these constants is summarized here. Further

details can be found in Stouffer and Dame [6] and Goldberg [5]. The constants are

determined using stress-strain curves obtained from a set of uniaxial constant strain rate

tensile tests of the polymer matrix material. Each test is conducted at a different total

strain rate. A basic assumption is that the constants determined from uniaxial tensile tests

are valid under multiaxial stress conditions and can be used in Equation 1. The value of

Do is currently assumed to be equal to a value of 104 times the maximum expected total

strain rate, which correlates with the maximum possible inelastic strain rate. To

determine the values of n, Zo, and _m, Equation 1 is simplified into its uniaxial

representation to model the results of the constant strain rate uniaxial tensile tests and

rearranged into an appropriate form. Data pairs of the total strain rate and saturation

stress (yield stress) values from each of the tensile stress-strain curves are taken. Values

for _m are estimated for the material, with initial estimates ranging from 50% to 75% of

the highest saturation stress found to work well. For each strain rate, the data values are

substituted into the rearranged form of Equation 1, and represent a point on a master

curve. The number of points in the master curve equal the number of strain rates at

which tensile tests were conducted. A least squares regression analysis is then performed

on the master curve to determine the required constants. The value for _m is adjusted

until an optimal fit to the data is obtained.

To determine the value for q for Equation 3, first the equation is converted into its

uniaxial equivalent and integrated. At saturation (yield), the value of the internal stress is

assumed to approach the maximum value, and the integrated equation is solved for q. If

the inelastic strain at saturation is found to vary with strain rate, the parameter q is

computed at each strain rate and regression techniques are utilized to determine an

expression for the variation of q.
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One key difference between the deformation response of polymers and the

deformation response of metals is that the mean stress effects in polymers are significant,

and need to be dealt with in a constitutive model. Bordonaro [8] indicated a possible way

of accounting for the effects of hydrostatic stresses in a state variable constitutive model

was to modify the effective stress terms. In this work, pressure dependence is included

by multiplying the shear terms in the K2 invariant in Equation 2 by the correction factor

O'm / 3

where _m is the mean stress, J2 is the second invariant of the deviatoric stress tensor, and

[3 is a material constant. The value of the parameter fl is currently determined empirically

by fitting data from composites with shear dominated fiber orientations, such as [+45°]s.

Efforts are currently underway to account for the hydrostatic stress effects in a more

systematic manner, based on using polymer tensile and shear data.

Composite Micromechanical Model

Micromechanics techniques are used to predict the effective properties and

deformation response of the individual plies in the composite laminate based on the

constituent properties. Laminate theory is then used to compute the effective

deformation response of the entire composite. The unit cell is defined to consist of a

single fiber and its surrounding matrix. Due to symmetry, only one-quarter of the unit

cell was analyzed. The composites are assumed to have a periodic, square fiber packing

and a perfect interfacial bond is specified. Classical laminate theory is assumed to apply

to the composites considered for this study, and each lamina is considered to be in a state

of plane stress. In certain applications, the out-of-plane stresses in the lamina could be

significant, in which case classical laminate theory would not apply. However, in order

to simplify the mathematics in the analysis, and since the plane stress assumption is

commonly made in the analysis of composite laminates, for this study any out-of-plane

effective stresses are neglected. If these stresses are eventually determined to be

significant, a three-dimensional laminate theory could be applied to allow for the

presence of transverse pressures and transverse shear stresses. The fibers are assumed to

be transversely isotropic and linearly elastic with a circular cross-section. The matrix is

assumed to be isotropic, with a rate dependent, nonlinear deformation response computed

using the equations described in the previous section. A key assumption of this approach

is that the in-situ matrix properties are equivalent to the bulk properties of the polymer.

However, the advantage of using this type of methodology is that it is simpler to conduct

experiments on the pure resin and to determine the material constants from the pure resin

data as opposed to trying to back out the resin properties from composite test data.

Furthermore, a key goal of this research is to provide a methodology that facilitates

reducing the amount of testing of the composite that is required to obtain strain rate

dependent material properties that can be input into a finite element code. Conducting

strain rate dependent tensile tests on the pure resin and using that data to predict the

composite deformation response is also much simpler than conducting tests on the
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composite. However, if in comparing test data obtained from composite specimens to

analytical predictions it appears that the bulk matrix properties do not accurately reflect

the in-situ state of the matrix, the polymer properties can always be appropriately

adjusted.

In previous work [5], the portion of the unit cell that was analyzed was divided into

four rectangular subcells, one for the fiber and three matrix subcells, similar to Aboudi's

Method of Cells [9]. By applying uniform stress and uniform strain assumptions to the

subcells within the unit cell, a system of ten coupled simultaneous equations resulted
which were solved for the stresses in each subcell. The effective elastic constants and

inelastic strains for the composite lamina were also determined.

In order to obtain more accurate results, the ability to refine the unit cell to allow for

a larger number of subcells is desirable. However, by applying the approach used

previously, solving a large number of simultaneous equations would be required to obtain

the subcell stresses. The number of equations would increase as the number of subcells

increased.

However, by considering the approximations required for classical laminate theory,

since each ply must be in a global state of plane stress one could assume that each row of

subcells in the unit cell must be in a state of plane stress. While the out-of-plane stresses

could be nonzero in individual subcells, the effective volume average of the stresses for

each row of subcells would equal zero. If transverse pressures and transverse shear

stresses are not neglected, the effective out-of-plane stresses in each row of subcells

would be a non-zero constant value throughout the thickness of the unit cell. However,

for this study only in-plane stresses are assumed to be present. By assuming a constant

out-of-plane stress in each row of subcells in the unit cell model, the behavior of each

row of subcells can be decoupled. One can divide the unit cell up into an arbitrary

number of horizontal slices (rows). A schematic demonstrating the fiber substructuring is

shown in Figure 1. Uniform stress and uniform strain assumptions can then be applied to

each slice to obtain the subslice (subcells within a slice) stresses, as well as the effective

inelastic strains and effective elastic constants for the slice. Laminate theory can then be
used to obtain the effective elastic and thermal constants and effective inelastic strains for

the composite lamina, and then applied again to obtain the effective elastic constants and

force resultants due to inelastic strains for the laminate. Similar approaches have been

used by Whitney [10] and Greszczuk [ 11 ] to determine the elastic constants of polymer

matrix composites. Mital, Murthy and Chamis [12] applied a slicing approach to

determine the elastic properties and deformation response of ceramic matrix composites.

The significance of this approach is that the stresses for each slice (both subslice and

effective) can be determined independently, which significantly reduces the number of

simultaneous equations that need to be solved. Furthermore, no matter how many slices

are included in the model, the size of the system of equations for each slice remains

constant. Therefore, instead of solving one large set of simultaneous equations, multiple

small sets of equations can be solved, which reduces the complexity of the problem.

Slicing Algorithm

The unit cell is divided up into several rectangular horizontal slices. The portion of

the unit cell that contains fiber and matrix is divided up into an odd number of slices of

equal thickness. The remaining matrix areas on the top and bottom of the unit cell are

NASA/TM--2002-211489 5



contained in individual slices. In Figure 1, the unit cell is divided up into five fiber slices,

and the portion of the unit cell that is analyzed (analysis cell) is divided up into three

fiber slices. The unit cell is assumed to measure one unit in length by one unit in height,

and the analysis cell is assumed to measure 0.5 units in length by 0.5 units in height. The

fiber slices are of equal thickness, except for the bottom slice in the analysis cell which is

one-half as thick as the remaining fiber slices due to symmetry. The slicing algorithm

used is very similar to that used by Mital, et al. [12].

To compute the fiber volume ratio and thickness ratio (the ratio of slice thickness to

total analysis cell thickness) for each slice in the analysis cell, the following procedure is

followed. The first step is to compute the area of the cross-section of the fiber within

each slice. The overall diameter of the fiber (dr) is related to the fiber volume fraction of

the overall composite (Vf) through the following relationship

(5)

and this term can be used along with the standard geometric definition of the radius of a

circle to compute the horizontal coordinate of any point on the outer surface of the fiber

in terms of the fiber volume fraction and the vertical coordinate. The area of the portion

of the fiber contained within each slice (A}) can computed by integrating the resulting

expression between the vertical (z) coordinates of the top and bottom of slice "i"

A i = -z'dz
f

(6)

which is also the equivalent area of the rectangular fiber slice in the analysis cell.

The fiber volume fraction of each slice composed of fiber and matrix is equal to the

fiber area in each slice divided by the total slice area (the slice thickness multiplied by

0.5). The thickness ratio for each slice composed of both fiber and matrix is equal to the

slice thickness divided by 0.5, the assumed total height of the analysis cell. The fiber

volume fraction of the top slice consisting of matrix only is equal to zero, and the

thickness ratio of the top slice is equal to one minus the sum of the thickness ratio of the

remaining slices.

Slice Micromechanics Equations

The effective properties, effective inelastic strains and effective thermal strains of

each slice are computed independently. The responses of each slice are combined using

laminate theory to obtain the effective response of the corresponding lamina. Most of the

slices are assumed to have two subslices, one subslice composed of fiber material and

one subslice composed of matrix material. The top slice is assumed to be composed of

matrix material only. The micromechanics equations are for those slices composed of

both fiber and matrix material. The stresses in the slices composed of pure matrix can be

computed using the matrix elastic properties and inelastic constitutive equations. The

standard transversely isotropic compliance matrix (or isotropic in the case of the matrix)
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is used to relate the local strains to the local stresses in the fiber and matrix. Each slice is

assumed to be in a state of plane stress on the global level, but out-of-plane normal
stresses can exist in each subslice.

Along the fiber direction (direction l 1), the strains are assumed to be uniform in each

subslice, and the stresses are combined using volume averaging. The in-plane transverse

normal stresses (22 direction) and the in-plane shear stresses (12 direction) are assumed

to be uniform in each subslice, and the strains are combined using volume averaging.

The out-of-plane strains (33 direction) are assumed to be uniform in each subslice. The

volume average of the out-of-plane stresses in each subslice is assumed to be equal to

zero, enforcing a plane stress condition on the global level for the slice.

The orthotropic compliance matrix is used to relate the strains (l?,ij) to the stresses (_j)

in each constituent, using the following relations

(7)

)'L2 = $66cr ,2+2e'[2 (8)

where all, O_22,and 0c33are the coefficients of thermal expansion, AT is the change in

temperature and ei/are the inelastic strains. Note that in these equations Sij represents the

components of the compliance matrix, not the components of the deviatoric stress tensor

s 0 as in the previous section. Also note that engineering shear strains (_j) are used in the

analysis.

The addition of the inelastic strain components to the standard orthotropic elastic

constitutive law facilitates the incorporation of inelasticity into the constitutive relations.

For the fiber, which is assumed to be linear elastic, these components are neglected. For

the fiber, which is transversely isotropic, $13 is set equal to Sl2 and $33 is set equal to $22.

For the matrix material, which is assumed to be isotropic, $23 and $13 are set equal to S_2,

and $22 and $33 are set equal to $I_. Furthermore, 0_33is set equal to _22 for the fiber and

a33 and 0c22are set equal to oql for the matrix.

By combining the uniform stress and uniform strain assumptions with the constituent

stress-strain relations, the following system of equations results

$1"-_1[ S_2f (°_" -°_2"-f )S'811- S---7-E33m- ¢"_zllj ]AT = IS 1If S t O" 1 I f O'llm "+

(9)
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(10)

Vra221 + O- Vr _., + vj s" AT--

(11)

7,._ = [VrS66I + (1 - Vr )$66., ]cr,2 + 2(1 - Vr )el2., (12)

S" = S,.,_j + S, ImV' (13)

V'= Vj

1 -Vj
(14)

that can be solved for the unknown stresses in the subslices. The total strains and

subslice inelastic strains are considered to be the known values in solving this problem.

The subscript "f" is used to denote fiber related properties, and the subscript "m" is used

to denote matrix related properties. Stresses and strains with no subscript are used to

represent effective stresses and strains for the slice (not the composite ply or laminate).

The symbol "Vf' is used here to represent the fiber volume ratio for the slice, computed

using the methods discussed earlier, not the total fiber volume fraction for the composite.

By substituting the subslice stresses back into the equations defining the uniform

stress assumptions, an expression relating the effective stresses to the effective strains in
the slice is obtained

t{e}lao°'22['[Q O, Q22 0 IIE22 - e, -tYlZ 0 Q6_ J[7,2 e3

(15)

where [Qij] represents the effective plane stress stiffness matrix for the slice. {ei}

represents the stress resultants due to inelastic strains and {ai} represents the stress

resultants due to thermal strains. To compute the effective inelastic strains and effective
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thermalexpansioncoefficientsfor theslice,the {el} and {as}vectorsarebroughtto the
left handsideof Equation15andtheexpressionis solvedfor thetotal strains. The
effectiveinelasticstrainsfor theslicecanbecomputedusingthefollowing expression

s0]teilE_,_ = j $22 0 e,

?'1'2 0 S66 e

(16)

where [Sij] is the effective compliance matrix for the slice, and {e0 .t} represents the

effective inelastic strain vector for the slice. Similarly, the effective thermal expansion

coefficients for the slice can be computed using the following expression

0;,,} = rS,, S1231a, l I
a_2 LS , S,: JI.a2 j :,T

(17)

where o_'11and 0(22 are the effective thermal expansion coefficients for the slice.

To compute the effective stiffness matrix, effective thermal expansion coefficients and

effective inelastic strains for the lamina (which are equivalent to the equivalent properties

for the analysis cell) from the effective stiffness matrix, thermal expansion coefficients,

and inelastic strains for each slice, the following procedure is used. First, the in-plane

strains for each slice are assumed to be constant and equal to the in-plane strains for the

lamina. The total in-plane stresses for the lamina are assumed to be equal to the volume

average of the in-plane stresses for each slice, as follows

(18)

where Nfis the number of fiber slices in the analysis cell, {a/j}/are the effective stresses

in the lamina,/1/represents the thickness ratio of each slice as defined earlier, and the

summation is over all of the slices (i).

To compute the plane stress stiffness matrix and effective inelastic strains for the

lamina, Equation 15 for the slice is rewritten as

O',, j 0 Q66 ?'12 -- ?'[2

(19)

where Equation 16 is applied to compute the {e,]} vector from the {ei } vector and

Equation 17 is applied to compute the thermal expansion coefficients from the a; vector.

By substituting Equation 19 into Equation 18, the effective plane stress stiffness matrix

for the lamina, [Q:]l, is obtained as follows
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Nj +I

[a:, ], = ZtQjk ],h':
i-1

(20)

where the summation is again over all of the slices. Likewise, by following the same

procedures used to go from Equation 15 to Equation 16, the following expression is

obtained for computing the effective inelastic strains for the lamina

o-s , o-
(21)

where {ei/}l is the effective inelastic strain vector for the lamina and [So]l is the effective

compliance matrix for the lamina. A similar procedure is used to compute the effective

thermal expansion coefficients for the lamina. By applying laminate theory again, the

effective response of the composite laminate can be computed as has been described in

Goldberg [13].

Simulation of Strain Rate Dependent Tensile Deformation

To verify the micromechanics equations, a series of analyses have been carried out

using a representative polymer matrix composite system that exhibits a strain rate

dependent, nonlinear deformation response. The material examined, supplied by Fiberite,

Inc., consists of carbon IM7 fibers in a 977-2 toughened epoxy matrix. Longitudinal

tensile tests have been conducted on the neat resin and composite laminates with various

fiber orientations at The Ohio State University. Tests were conducted at strain rates of

about 5× 10-5/sec, about 1.0/sec and about 400-600/sec. Dog-bone shaped specimens

were used with a gage length of approximately 0.9525 cm. The low strain rate testing

was conducted using an Instron hydraulic testing machine. The high strain rate tests were

conducted using a tensile split Hopkinson bar apparatus.

The IM7/977-2 composite has a fiber volume ratio of 0.60. The material properties

used in this study for the IM7 fiber include a longitudinal modulus of 276 GPa, a

transverse modulus of 12.4 GPa, a longitudinal Poisson's ratio of 0.25, a transverse

Poisson's ratio of 0.25 and an in-plane shear modulus of 20.0 GPa. The longitudinal

modulus, longitudinal Poisson's ratio and in-plane shear modulus are as given in Gates,

et al. [14]. The transverse modulus of the fiber was reduced slightly from the value given

in Gates, et al. [14] in order to provide a good correlation in the elastic range with data

from [90 °] specimens. Since the transverse modulus given in Gates, et al. [14] was also

a correlated value, a variation of this sort was considered acceptable. The value for the

transverse Poisson's ratio was taken from Murthy, et al. [ 15] based on representative

carbon fiber data. Temperature effects and processing related issues were not accounted

for in the current analyses due to the lack of available data. Temperature effects might be

incorporated into the predictions in the future.

The material properties for the 977-2 resin were determined using the procedures
described earlier. Note that since this resin did not reach a "saturation" stress before
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failure, appropriate values were extrapolated from the tensile data and used to obtain the

material properties. The value for the constant "[3" required for the correction factor

given in Equation 4 was determined to be strain rate dependent. In addition, the material

constant "q" from Equation 3 was found to be rate dependent for this material. The

elastic modulus for the matrix at high strain rates was found to be significantly higher

than the modulus at the low and moderate strain rates. The value of the constant "q'" was

found to be quite low at high strain rates. This variation is most likely due to the fact that

in metals, for which the polymer constitutive equations used here were originally

developed, the elastic modulus is assumed not to vary with strain rate. However, for the

polymer examined here the modulus increased significantly at high strain rates. This

would lead to a significant increase in the inelastic strain at saturation compared to the

lower strain rates, which would lead to a reduction in the value of "q". The values of the
material constants for the 977-2 resin include an elastic modulus of 3.52 GPa for the low

and moderate strain rates and 13.8 GPa for the high strain rate, a Poisson's ratio of 0.40,

and inelastic constants as follows: Do= l × 106, n=0.42, Zo=2180 MPa, q ranging from 85

for the low strain rate, 160 for the moderate strain rate and 20 for the high strain rate,

_/m=76 MPa, and 13ranging from 1.05 for the low strain rate, 0.90 for the moderate strain

rate and 0.50 for the high strain rate.

Experimental and computed longitudinal tensile stress-strain curves for two laminate

configurations ([45 °] and [+45°]s) of the IM7/977-2 material are shown in Figure 2 and

Figure 3. These laminate configurations were chosen due the pronounced nonlinearity

and strain rate dependence observed in the experimental results. Three fiber slices were

used in the analysis cell for the computations. This value was found to yield sufficiently

converged answers. In Figure 2, results for the [45 °] laminates at strain rates of

4.75×10-5/sec, 1.2/sec and 405/sec are shown. In Figure 3, results for the [_+45°]_

laminates at strain rates of 9×10-5/sec, 2.1/sec and 604/sec are shown. As can be seen in

the figures, the analytical model captures the rate dependence and nonlinearity of the

experimental stress-strain curves. Furthermore, the comparison between the

experimental and computed results is quite good.

Prediction of Effective Elastic and Thermal Constants

To validate the ability of the composite micromechanics to predict the effective elastic

and thermal properties of a polymer matrix composite, the initial, elastic, room

temperature material properties of a representative carbon fiber reinforced polymer

matrix composite with a [0 °] fiber orientation were computed. The results are compared

to values obtained through finite element analyses by Hyer [16]. For the carbon fiber, the

longitudinal modulus is taken to be 233 GPa, the transverse modulus is taken to be

23.1 GPa, the longitudinal Poisson's ratio is 0.20, the transverse Poisson's ratio is 0.40,

the in-plane shear modulus is 8.96 GPa, the longitudinal coefficient of thermal expansion

is -0.540× 10-6/K, and the transverse coefficient of thermal expansion is 10.10× 10-6/K.

For the matrix, the modulus is 4.62 GPa, the Poisson's ratio is 0.36 and the coefficient of

thermal expansion is 41.4x10-6/K. The fiber volume ratio was set to 0.60. All of the

properties are as given by Hyer [16]. For the analysis, three fiber slices were once again

used in the analysis cell.
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Thepredictedvaluesof the longitudinal (El 1 ) and transverse (E22) modulus,

longitudinal Poisson's ratio (v 12), in-plane shear modulus (G12), and longitudinal (czl_)

and transverse ((Z22) thermal expansion coefficients are listed in Table 1 along with the

values computed using finite element analyses [16]. For the thermal expansion

coefficients, values computed using a micromechanics approach based on energy

methods [1] are also listed. As can be seen in the table, the elastic properties computed

using the methodology presented in this paper match the finite element results quite well.

The predicted thermal expansion coefficients differ slightly from the finite element

results. However, the current methodology provides an improved prediction in the

longitudinal direction when compared to the energy based method, and an equivalent

prediction in the transverse direction. Overall, the current methodology provides good

predictions of effective elastic and thermal properties of polymer matrix composites.

Table 1- Prediction of Effective Material Properties

Property Finite Element Energy Predicted
Method

Eli (GPa) 141.7 .......... 141.7

E22 (GPa) 12.4 .......... 12.6

v12 0.259 .......... 0.266

G12 (GPa) 4.05 .......... 3.90

cqi (/K) 0.088 0.007 0.112

or2._(/K) 26.4 28.5 29.1

Conclusions

An analytical model has been developed to analyze the strain rate dependent,

nonlinear deformation response of polymer matrix composites. State variable

constitutive equations based on the Ramaswamy-Stouffer model are used to compute the

deformation response of the polymer matrix. A mechanics of materials based
micromechanics method in which the unit cell was divided into several slices is used to

predict the effective elastic and thermal properties and the effective deformation of the

composite. The stress strain curves computed using the analytical model compared

favorably to the experimental results across the entire range of strain rates, indicating that

the analysis is correctly capturing the important features of the deformation response.

Effective elastic and thermal properties were also correctly predicted using the analytical

model. The analytical methods described in this study can be used in explicit finite

element codes to provide a more realistic analysis of deformation during blade-out events

for fan containment systems composed of composite materials.

Future efforts will concentrate on improving the methodology used to account for

mean stress effects in the polymer constitutive equations. The ability to account for

thermal effects will also be added to the constitutive equations. The micromechanics will

be modified to allow for the analysis of woven and braided composites.

NASA/TM---2002-211489 12
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